Analisis Pengaruh Jumlah Bilge Keel terhadap Gerakan Rolling pada Kapal Patroli 14 m

Main Article Content

Ari Widyatmoko
Samuel Samuel
Parlindungan Manik
Andi Trimulyono

Abstract

Abstrak

Kapal Patroli merupakan kapal yang memiliki ukuran yang relatif kecil, namun memiliki kecepatan yang cukup tinggi. Bentuk kapal yang kecil akan berpengaruh terhadap gerakan rolling kapal, sehingga menarik untuk dibahas secara mendalam pengaruh pemasangan bilge keel terhadap gerakan kapal. Penelitian ini akan menganalisis pengaruh bilge keel yang ditambah jumlahnya menjadi 2 pasang dan 3 pasang terhadap efek gerakan rolling kapal agar dapat memperbaiki performa kapal menjadi lebih baik. Model kapal patroli yang telah didesain akan dianalisis menggunakan metode BEM (Boundary Element Method) yang terintegrasi untuk mendapatkan nilai rolling pada setiap model yang dianalisis. Pada penelitian ini, didapatkan kesimpulan bahwa penambahan jumlah bilge keel akan menambah RMS rolling sebesar 11-50% pada kecepatan rendah, namun dapat mengurangi RMS rolling sebesar 7-28% pada kecepatan tinggi.

Kata kunci: Bilge Keel, Kapal Patroli, Olah Gerak Kapal, Rolling.

Abstract

A Study on the Effects of Bilge Keel Number on 14 m Patrol Boats Rolling Motion: Patrol boats can move at such high speed despite their relatively small size. This relatively small size will affect its rolling motions, hence the effect of bilge keel installation on ship motions is an interesting topic to discuss. In this study, the effect of adding bilge keel pair to 2 and 3 pairs of bilge keel on ships rolling motions was studied so that the ships performance becomes more optimal. The patrol boat model that had been designed was studied using integrated BEM (Boundary Element Method) to obtain each models rolling value. This study concluded that the addition of installed bilge keel pairs increased RMS rolling by 11-50% on low speed, but it reduced 7-28% RMS rolling at high speed.

KeywordsBilge Keel, Patrol boats, Ship motions, Rolling.

Article Details

Section
Articles

References

[1] D. J. P. Laut, “Pedoman Teknis Kriteria Penempatan Kapal Negara Patroli,” Kementrian Perhub. Direktorat Jenderal Perhub. Laut, pp. 1–38, (2019).

[2] R. Romadhoni, “Optimasi Respon Gerakan Kapal Ikan Catamaran Terhadap Gelombang Reguller,” J. IPTEK, vol. 21, no. 1, p. 17, (2017), doi: 10.31284/j.iptek.2017.v21i1.46.

[3] A. B. Mahfouz, “Identification of the nonlinear ship rolling motion equation using the measured response at sea,” Ocean Eng., vol. 31, no. 17–18, pp. 2139–2156, (2004), doi: 10.1016/j.oceaneng.2004.06.001.

[4] Y. Liu, F. Han, and Y. Lu, “Stability and capsizing analysis of nonlinear ship rolling in wind and stochastic beam seas,” Appl. Ocean Res., vol. 57, pp. 52–63, (2016), doi: 10.1016/j.apor.2016.02.008.

[5] H. Hendratmoko and Hasanudin, “Studi Eksperimen Pengaruh Lunas Bilga Terhadap Gerakan Rolling,” J. Tek. Its, vol. 1, no. 1, pp. 94–97, (2012).

[6] X. Zhang, X. Gu, and N. Ma, “Bilge keel load and hull pressure distribution on a rolling ship section with a high-order fractional step finite volume solver,” Ocean Eng., vol. 199, no. November 2019, (2020), doi: 10.1016/j.oceaneng.2020.107014.

[7] S. Samuel, S. Jokosisworo, M. Iqbal, P. Manik, and G. Rindo, “Verifikasi Deep-V Planing Hull Menggunakan Finite Volume Method Pada Kondisi Air Tenang,” Teknik, vol. 41, no. 2, pp. 126–133, (2020), doi: 10.14710/teknik.v0i0.29391.

[8] Samuel, A. Trimulyono, and A. W. B. Santosa, “Simulasi CFD pada Kapal Planing Hull,” Kapal, vol. 16, no. 3, pp. 123–128, (2019), doi: 10.14710/kapal.v16i3.26397.

[9] A. Saputra, U. Budiarto, and G. Rindo, “Analisa Pengaruh Bilge Keel Tipe Bulb Terhadap V Dan U Pada Kapal Patroli Dengan Menggunakan Metode Computational Fluid Dynamic (CFD),” J. Tek. Perkapalan, vol. 7, no. 1`, pp. 20–28, (2019).

[10] X. Sinaga, P. Manik, and D. Chrismianto, “Analisa Pengaruh Geometri Lunas Bilga terhadap Performa Kapal pada Kapal Patroli Pilot Boat 15 Meter,” Tek. Perkapalan, vol. 6, no. 2, pp. 326–332, (2018).

[11] M. I. Malik, P. Manik, and M. Iqbal, “Pengembangan Desain Geometri Lunas Bilga Untuk Meningkatkan Performa Kapal Ikan Tradisional (Studi Kasus Kapal Tipe Kragan),” J. Tek. Perkapalan, vol. 4, no. 1, pp. 748–757, (2016).

[12] M. A. R. Irkal, S. Nallayarasu, and S. K. Bhattacharyya, “CFD approach to roll damping of ship with bilge keel with experimental validation,” Appl. Ocean Res., vol. 55, no. February, pp. 1–17, (2016), doi: 10.1016/j.apor.2015.11.008.

[13] D. G. M. Watson, Practical Ship Design, vol. 1, no. C. 1998.

[14] A. C. Notations, “Rules for the Classification of Naval Ships,” Bur. Verit., no. April, pp. 1–27, (2020).

[15] T. C. Smith and W. L. I. Thomas, “A survey of ship motion reduction devices,” David W Taylor Nav. Sh. Res. Dev. Cent., vol. DTRC/SHD-1, p. 47, (1990), [Online]. Available: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA229278.

[16] D. Skandali, E. Lourens, and R. H. M. Ogink, “Calibration of response amplitude operators based on measurements of vessel motions and directional wave spectra,” Mar. Struct., vol. 72, no. April, (2020), doi: 10.1016/j.marstruc.2020.102774.

[17] R. May, “ANSYS AQWA for Hydrodynamic Analysis,” pp. 1–29, (2010).

[18] Y. L. Shao and O. M. Faltinsen, “A numerical study of the second-order wave excitation of ship springing by a higher-order boundary element method,” Int. J. Nav. Archit. Ocean Eng., vol. 6, no. 4, pp. 1000–1013, (2014), doi: 10.2478/IJNAOE-2013-0227.

[19] J. T. Katsikadelis, Boundary Elements: Theory and Applications, no. June 2002. 2002.

[20] M. Costabel, “Principles of Boundary Element Methods,” Comput. Phys. Reports, vol. 6, no. 1–6, pp. 1–28, (1987), doi: 10.1016/0167-7977(87)90014-1.

[21] ITTC, “Practical guidelines for ship CFD applications,” 2014.

[22] M. Iqbal and G. Rindo, “Optimasi Bentuk Demihull Kapal Katamaran Untuk Meningkatkan Kualitas Seakeeping,” Kapal, vol. 12, no. 1, pp. 19–24, (2015), doi: 10.12777/kpl.12.1.19-24.

[23] Nordforsk, “NORDFORSK Seakeeping Criteria,” (1987).

[24] M. Grimm, W. Smith, and D. Fortescue, “The influence of roll radius of gyration including the effect of inertia of fluids on motion predictions,” RINA, R. Inst. Nav. Archit. - PACIFIC 2017 Int. Marit. Conf., (2017).