Evaluasi Penerapan Tokyo MoU Guna Meningkatkan Aspek Keselamatan Kapal Indonesia pada Pelayaran Internasional

Main Article Content

Antoni Arif Priadi
Rendi Ferdillah

Abstract

Dalam rangka mematuhi standar peraturan internasional mengenai keselamatan pelayaran, keamanan, serta pencegahan pencemaran laut, merupakan tanggung jawab masing-masing negara bendera terhadap kapal-kapal yang mengibarkan benderanya. Sebagai negara berbasis maritim, setiap tahunnya ratusan kapal berbendera Indonesia berlayar ke luar negeri. Namun, masih tingginya angka persentase penahanan terhadap kapal berbendera Indonesia menyebabkan kurangnya kepercayaan dunia pelayaran terhadap standar keselamatan kapal Indonesia. Meskipun saat ini Indonesia termasuk dalam daftar “white list” di Tokyo MoU, Indonesia sangat rentan kembali ke daftar “grey list” bahkan “black list” jika tidak segera memperbaiki posisinya di dalam daftar “white list”. Peningkatan performa negara bendera menjadi sangat penting dalam meningkatkan kepercayaan tersebut dengan melibatkan seluruh stakeholder terkait. Untuk memenuhi tujuan tersebut, maka identifikasi terhadap jenis defisiensi yang menyebabkan penahanan kapal berbendera Indonesia dilakukan dengan klusterisasi menggunakan model Software, Hardware, Environment, dan Liveware (SHEL). Kemudian, penentuan stakeholder sebagai lapisan pertahanan untuk mencegah terjadinya penahanan kapal menggunakan model Swiss Cheese. Hasilnya adalah tiap stakeholder yang merepresentasikan tiap lapisan keju sebagai lapisan pertahanan mendapatkan identifikasi masalah yang spesifik dari tiap komponen pada SHEL, dan strategi pencegahan dapat diformulasikan dengan baik bagi tiap stakeholder. Hasil dari penelitian ini dapat digunakan sebagai referensi oleh regulator, pemilik kapal atau perusahaan pelayaran, nahkoda, dan kru kapal dalam menerapkan strategi alternatif pencegahan penahanan kapal.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

Akyuz, E., & Celik, M. (2014). A hybrid decision-making approach to measure effectiveness of safety management system implementations on-board ships. Safety Science, 68, 169–179. https://doi.org/10.1016/j.ssci.2014.04.003

APCIS. (2023). The Asia Pacific Computerized Information System (APCIS). https://apcis.tmou.org/public/

Chen, D., Pei, Y., & Xia, Q. (2020). Research on human factors cause chain of ship accidents based on multidimensional association rules. Ocean Engineering, 218, 107717. https://doi.org/10.1016/j.oceaneng.2020.107717

Chen, J., Li, K. X., Liu, X., & Li, H. (2019). The development of ship registration policy in China: Response to flags of convenience. Marine Policy, 83, 22–28. https://doi.org/10.1016/j.marpol.2017.05.020

Chen, J., Zhang, S., Xu, L., Wan, Z., Fei, Y., & Zheng, T. (2019). Identification of key factors of ship detention under Port State Control. Marine Policy, 102, 21–27. https://doi.org/10.1016/j.marpol.2018.12.020

Chen, S.-T., Wall, A., Davies, P., Yang, Z., Wang, J., & Chou, Y.-H. (2013). A Human and Organisational Factors (HOFs) analysis method for marine casualties using HFACS-Maritime Accidents (HFACS-MA). Safety Science, 60, 105–114. https://doi.org/10.1016/j.ssci.2013.06.009

Chuah, L. F., Mohd Rof’ie, N. R., Mohd Salleh, N. H., Abu Bakar, A., Oloruntobi, O., Othman, M. R., Mohamed Fazlee, U. S., Mubashir, M., & Asif, S. (2023). Analyzing the influencing factors of Port State Control for a cleaner environment via Bayesian network model. Cleaner Engineering and Technology, 14, 100636. https://doi.org/10.1016/j.clet.2023.100636

Chung, W.-H., Kao, S.-L., Chang, C.-M., & Yuan, C.-C. (2020). Association rule learning to improve deficiency inspection in port state control. Maritime Policy & Management, 47(3), 332–351. https://doi.org/10.1080/03088839.2019.1688877

Emecen Kara, E. (2016). Risk Assessment in the Istanbul Strait Using Black Sea MOU Port State Control Inspections. Sustainability, 8(4), 390. https://doi.org/10.3390/su8040390

Emecen Kara, E. G. (2022). Determination of maritime safety performance of flag states based on the Port State Control inspections using TOPSIS. Marine Policy, 143, 105156. https://doi.org/10.1016/j.marpol.2022.105156

Fan, L., Wang, M., & Yin, J. (2019). The impacts of risk level based on PSC inspection deficiencies on ship accident consequences. Research in Transportation Business & Management, 33, 100464. https://doi.org/10.1016/j.rtbm.2020.100464

Fu, J., Chen, X., Link to external site, this link will open in a new tab, Wu, S., Link to external site, this link will open in a new tab, Shi, C., Zhao, J., Link to external site, this link will open in a new tab, & Xian, J. (2020). Ship Detention Situation Prediction via Optimized Analytic Hierarchy Process and Naïve Bayes Model. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/8147310

Grech, M. R., Horberry, T. J., & Koester, T. (2019). HUMAN FACTORS in the MARITIME DOMAIN (1 ed.). CRC Press. https://doi.org/10.1201/9780429355417

Groenleer, M., Kaeding, M., & Versluis, E. (2010). Regulatory governance through agencies of the European Union? The role of the European agencies for maritime and aviation safety in the implementation of European transport legislation. Journal of European Public Policy, 17(8), 1212–1230. https://doi.org/10.1080/13501763.2010.513577

Hänninen, M., & Kujala, P. (2014). Bayesian network modeling of Port State Control inspection findings and ship accident involvement. Expert Systems with Applications, 41(4, Part 2), 1632–1646. https://doi.org/10.1016/j.eswa.2013.08.060

Hawkins, F. H. (2017). Human Factors in Flight (H. W. Orlady, Ed.; 2 ed.). Routledge. https://doi.org/10.4324/9781351218580

IMO A.947(23). (2003). Human element vision, principles and goals for the organization. https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/AssemblyDocuments/A.947(23).pdf

IMO A.1149(32). (2021). Revised strategic plan for the organization for the six-year periode 2018 to 2023. https://wwwcdn.imo.org/localresources/en/About/strategy/Documents/A%2032-Res.1149%20-%20REVISED%20STRATEGIC%20PLAN%20FOR%20THE%20ORGANIZATION%20FOR%20THE%20SIX-YEAR%20PERIOD%202018%20TO%202023.pdf

INSA. (2023, Juni 12). Tiga Tahun Berturut-Turut, Indonesia Masuk White List Tokyo MoU. Indonesia National ShipOwners Assosiation | DPP INSA. http://dppinsa.com/

Itoh, H., Mitomo, N., Matsuoka, T., & Murohara, Y. (2004). An Extension of m-SHEL Model for Analysis of Human Factors at Ship Operation.

Ji, X., Brinkhuis, J., & Knapp, S. (2015). A method to measure enforcement effort in shipping with incomplete information. Marine Policy, 60, 162–170. https://doi.org/10.1016/j.marpol.2015.06.015

Li, K. X., & Zheng, H. (2008). Enforcement of law by the Port State Control (PSC). Maritime Policy & Management, 35(1), 61–71. https://doi.org/10.1080/03088830701848912

Oceans HQ. (2015, Mei 20). Top reasons for Port State Control detentions. Oceans HQ. https://www.oceanshq.com/articles/top-reasons-for-port-state-control-detentions/

Perepelkin, M., Knapp, S., Perepelkin, G., & de Pooter, M. (2010). An improved methodology to measure flag performance for the shipping industry. Marine Policy, 34(3), 395–405. https://doi.org/10.1016/j.marpol.2009.09.002

Reason, J. T. (1990). Human error. Cambridge University Press.

Saragih, J. W. P., Suwarno, & Hasibuan, A. (2020). Analysis of Damage to Ship MT. Delta Victory due to Human Error and Electricity with the Shel Method. 2020 4rd International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), 48–51. https://doi.org/10.1109/ELTICOM50775.2020.9230475

Taslimi, S. (2015, November 9). Shell model. Cavendish International. https://www.cavendish.ac.uk/shell-model-in-aviation/

Tokyo MoU. (t.t.). Memorandum of Understanding on Port State Control in the Asia-Pacific. Diambil 13 Juli 2023, dari https://www.tokyo-mou.org/

Wang, Y., Zhang, F., Yang, Z., & Yang, Z. (2021). Incorporation of deficiency data into the analysis of the dependency and interdependency among the risk factors influencing port state control inspection. Reliability Engineering & System Safety, 206, 107277. https://doi.org/10.1016/j.ress.2020.107277

Yang, Z., Yang, Z., & Yin, J. (2018). Realising advanced risk-based port state control inspection using data-driven Bayesian networks. Transportation Research Part A: Policy and Practice, 110, 38–56. https://doi.org/10.1016/j.tra.2018.01.033

Yildiz, S., Uğurlu, Ö., Wang, J., & Loughney, S. (2021). Application of the HFACS-PV approach for identification of human and organizational factors (HOFs) influencing marine accidents. Reliability Engineering & System Safety, 208, 107395. https://doi.org/10.1016/j.ress.2020.107395

Zhu, J.-H., Yang, Q., & Jiang, J. (2023). Identifying crucial deficiency categories influencing ship detention: A method of combining cloud model and prospect theory. Reliability Engineering & System Safety, 230, 108949. https://doi.org/10.1016/j.ress.2022.108949